
RIFLESCOPE Vortex EBR-1 MOA Reticle 10 10 20 10 20

The Vortex Razor HD 5–20x50 riflescope is equipped with the Vortex EBR-1 MOA reticle.

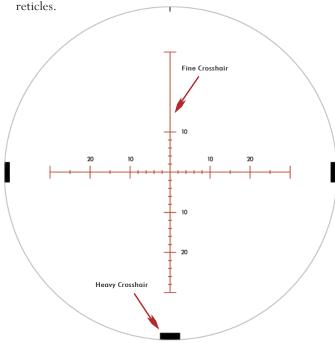
Designed to maximize long distance shooting and ranging abilities, the EBR-1 reticle can be used to effectively determine ranges, holdovers, and windage corrections. Ultra precision laser etching on the glass

reticle ensures that MOA specifications can be kept to the tightest tolerances possible. The fine center crosshair subtensions on the EBR- 1 reticle were carefully chosen to provide the optimum balance between precision aiming and low light visibility.

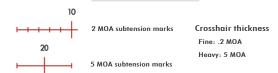
1

MOA Subtensions

The EBR-1 reticle is based on minute-of-angle (MOA)


subtensions. Many shooters are very familiar with the MOA system used in hunting riflescopes. MOA measurements are based on degrees and minutes: 360 degrees in a circle, 60 minutes in a degree for a total of 21,600 minutes. These angular measurements are used to estimate range and correct for bullet trajectory drop in riflescopes. 1 MOA will correspond to 1.05 inches at a 100 yard distance, 2.1 inches at 200 yards, 3.15 inches at 300 yards, and so on.

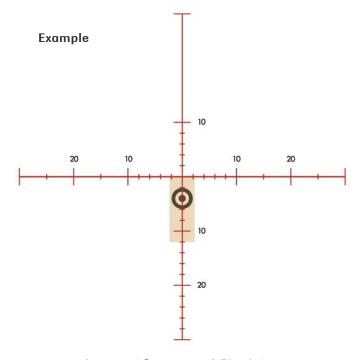
Estimating MOA


Although 1 MOA is very commonly corresponded to 1 inch at 100 yards, this is not quite correct 1 MOA at 100 yards equals 1.05 inches.
Calling 1 MOA an inch per 100 yards may be acceptable at shorter distances, but it will cause a five percent error in ranging and holdover adjustments. This will result in missed shots at longer distances.

When used in a first focal plane riflescope, such as the Vortex Razor HD riflescopes, the MOA subtensions of the EBR-1 reticle are valid at all magnification levels. This means the shooter can use the magnification level most appropriate for the situation and still have effective holdover and windage reference marks. This is extremely valuable in a high-stress situation because

the shooter does not have to remember to set the scope to one particular magnification to get valid holdovers—an action necessary in the more common second focal plane

EBR-1 Reticle Subtensions


Ranging

MOA measurements are very effective for ranging using a simple formula. To use this formula, the shooter needs to know the size of the target or nearby object in inches.

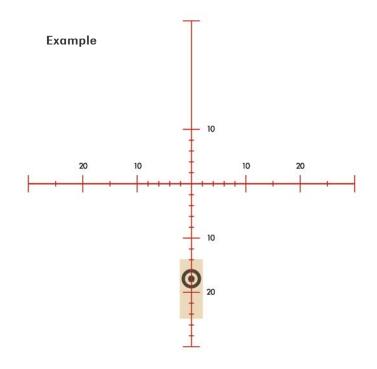
MOA Ranging Formula

Using either the vertical or horizontal MOA scale, place the reticle on a target of known dimensions and read the number of MOAs spanned. You will obtain maximum accuracy in ranging by calculating exact MOA measurements. MOAs should be estimated in 1/4s if possible. To help calculate fractions of MOAs, the inner crosshair line thickness can be used as a reference. All inner line thicknesses subtend 1/5 MOA.

Accurate measuring will depend on a very steady hold. The rifle should be solidly braced using a rest, bipod or sling when measuring. Once you have an accurate MOA reading, use the formula to calculate the distance.

Ranging a 6-foot target stand (72 inches) at 12 MOAs yields 573 yards.

$$\frac{72 \times 95.5}{12 \text{ MOA}} = 573 \text{ Yard}$$


Note: In the MOA ranging formula, a shooter may substitute 100 for 95.5 in the interest of speedier calculations. Be aware that this will produce a five percent **over-estimation error** of the yardage distance obtained.

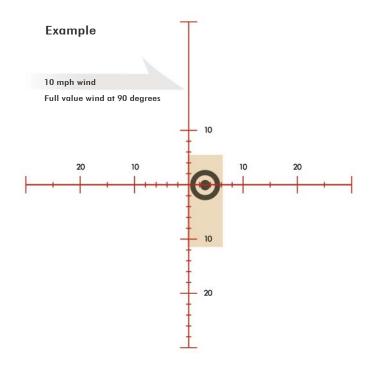
5

Elevation Holdovers

Once the distance has been calculated using the EBR-1 reticle or a laser rangefinder, the EBR-1 can be used for rapid holdover correction for bullet drop of the cartridge being used. To get the most benefit out of the EBR-1 equipped riflescope, Vortex Optics highly recommends shooters learn their bullet drop numbers in MOAs rather than inches.

Since the EBR-1 reticle is scaled in 2 MOA increments, it is an easy job to quickly select the correct drop reference line once the shooter knows the bullet drops in MOAs. If the shooter prefers to dial *come ups* for bullet drop using the elevation knob, knowing bullet drops in MOAs rather than inches will allow for much faster adjustments as the MOAs can be quickly read on the elevation knob.

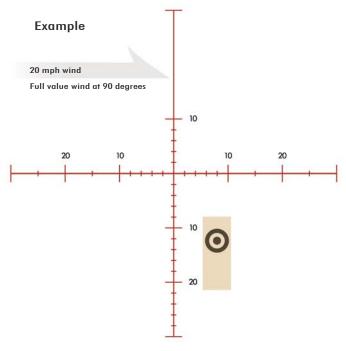
17.5 MOA reticle holdover for 625 yard shot. No wind.


-

Windage and Moving Targets

The EBR-1 reticle is highly effective when used for wind and moving target leads. Using the reticle for effective windage and moving target leads will require thorough knowledge of your weapons system's ballistic performance under varying conditions and experience in reading wind strengths and target speeds. As in bullet drops, it is important for the shooter to learn a particular weapon's windage/moving target corrections in MOAs rather than inches. Always hold the reticle into the wind.

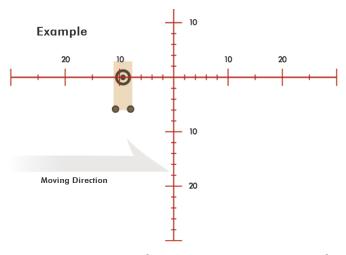
Basic windage correction on center crosshair


When dialing elevation *come ups*, the center horizontal crosshair will be used for windage or moving lead corrections. MOA marks on the horizontal crosshair are graduated in 2 MOA increments out to 10 MOAs, and at 5 MOA increments beyond that.

3 MOA reticle windage correction for 400 yard shot in 10 mph crosswind using center crosshair. Elevation adjustment already dialed into riflescope.

Basic windage correction using drop line on reticle

When using the reticle for elevation correction rather than dialing, the MOA marks on the center horizontal crosshair can still be used to help visually reference windage corrections. Remember to hold the reticle into the wind.



8 MOA reticle windage correction for 500 yard shot in 20 mph crosswind using 12 MOA reticle drop line.

Basic moving lead correction

When estimating moving target leads, the MOA marks on the center horizontal crosshair can be used. Estimating moving target leads will require knowing yardage distance, wind speed, moving target speed, and total bullet flight time (including rifle lock time). Bullet flight times can be roughly calculated based on fps velocities or a ballistic calculator.

Note: Correctly estimating moving leads is very difficult and requires considerable practice and knowledge beyond the scope of this manual.

9.4 MOA reticle correction for a target moving 3 mph at a distance of 800 yards. No wind. Total bullet time of flight from trigger pull 1.5 seconds during which the target travels 6.6 feet. Elevation already dialed into turret.

Vortex Service and Repair Policy

Unconditional Lifetime Warranty

Vortex Optics wants you to shoot and use your Razor HD riflescope under any conditions with complete confidence—that's why our warranty is straightforward and simple:

Unconditional Lifetime Warranty

- Fully transferable
- No warranty card needed
- · No receipt needed

Rest assured, if this riflescope should ever require repair, all you need to do is contact Vortex for absolutely free service. Call 800-426-0048 or e-mail service@vortexoptics.com.

Vortex Optics 2120 West Greenview Drive Middleton, Wisconsin 53562 USA

Patent Pending

Dual Use for Shooting Tactical / Hunting

vortexoptics.com